COLLOQUE ANNUEL DU GDR HYDROGEMM - 2024
ATION NUMÉRIQUE DES « SYSTÈMES HYDROGÈNE » COLLOQUE ANNUEL DU GDR HYDROGEMM - 2024

MODÉLISATION NUMÉRIQUE DES « SYSTÈMES HYDROGÈNE »

MODÉLISATION NUMÉRIQUE DES « SYSTÈMES HYDROGÈNE »

 \overline{C}

MC CACAS-STENTZ, F.WILLIEN, F.P. MC CACAS-STENTZ, F.WILLIEN, F.PATACCHINI, B.BRACONNIER

INTRODUCTION - NATURAL H_2 EXPLORATION

NTRODUCTION - NATURAL H₂ EXPLORATION

New challenges for basin geologists: significant differences between H₂ systems

and petroleum systems
 \bullet Multiple sources, poorly known O New challenges for basin geologists: significant differences between H_2 systems **NTRODUCTION - NATURAL H₂ EXPLORATION**
New challenges for basin geologists: significant difference
and petroleum systems
O Multiple sources, poorly known Multiple sources, poorly known

Multiple sources, poorly known

Multiple sources, poorly known

Multiple sources, poorly known

Migration:
 Multiple sources, poorly known

Migration:
 Dissolved flow

Migration: UCTION - NATURAL H₂ EXPLORATION

Ilenges for basin geologists: significant differences be

bleum systems

siple sources, poorly known

ation:
 Dissolved flow

Advection as a component of a mixture of dissolved gases:

-
- **O** Migration:
	-
- Migration:

 Dissolved flow

Advection as a component of a mixture of dissolved
 H_2 , He, CH₄, N₂

 Possible **transition to free-gas flow**

 Diffusion

 Alteration

 Alteration H_2 , He, CH₄, N₂ , N_2
	-
	- **O** Diffusion
	- **O** Alteration

THE EXAMPLE OF NATURAL H2 EXPLORATION

O Accumulation:

-
-
- \n① Accumulation:\n① Need a better cap rock\n① Chemical and biological alteration\n④ Most probably dynamic accumulation:\n① Leakage balanced by influx\n② Recharge rate needs to be considered\n
	-
	-

mixture

FOCUS ON USEFUL FUNCTIONNALITIES

● Water ≒ Vapor exchange

H₂ solubility from an analytic model calibrated with Sorreide & Whitson

solubility =
$$
e^{(a1.m^2 + a2.m)}
$$
. $(b1.PT + b2.\frac{P}{T} + b3.P + b4 \cdot P^2)$

O Diffusion

$$
\vec{j} = -D_{eff} \overline{\nabla} c
$$
 with $D_{eff} = D_0(T)$. φ .

 \Rightarrow

Only in water; low solubility & low D_0

limited flux

O Alteration

$$
\frac{dx_{H2}}{dt} = -A x_{H2}
$$

$$
A = A_0 * \left\{ \frac{T - Tmin}{Topt - Tmin} \cdot \frac{(1 - e^{c(T - T)} - 1)}{(1 - e^{c(T - T)}/2)} \right\}^2
$$

with

 Δ \odot 2021 IFPEN Renewable energies

FOCUS ON USEFUL FUNCTIONNALITIES
• Source terms: ON USEFUL FUNCTIONNALITIES

rerms:

Thermogenic

Imposed concentration

Imposed input gas rate (kg/Myrs)

Imposed input flow rate with imposed concentration ON USEFUL FUNCTIONNALITIES

Imposed concentration

Imposed concentration

Imposed input gas rate (kg/Myrs)

Imposed input flow rate with imposed concentration

w modelling:

O Source terms:

- **O** Thermogenic
-
-
-

Renewable energies

NEW ENERGIES

APPLICATION EXAMPLE

3 SCENARIOS

NEW ENERGIES

-
- Neutral faults
- NEW ENERGIES

A geologic-time-scale system
 Neutral faults

Injection rate = 800l/year, 90ppm, starts at 50 Myrs Injection rate = 800l/year, 90ppm, starts at 50 Myrs
- NEW ENERGIES

A geologic-time-scale system
 Neutral faults

Injection rate = 800l/year, 90ppm, starts at 50 Myrs

Same as above, but **enhanced permeability faults**

K_{faults} = K_{facies} X 10000

Fluid is injected at fau **EXERGLES**
 Render and SERGLES
 Neutral faults

Injection rate = 800l/year, 90ppm, starts at 50 Myrs

Same as above, but **enhanced permeability faults**

F_{laults} = K_{facies} x 10000

Fluid is injected at fault roots

- $K_{\text{faults}} = K_{\text{facies}} \times 10000$
-
-
- A geologic-time-scale system
 Neutral faults

Injection rate = 800l/year, 90ppm, starts at 50 Myrs

Same as above, but **enhanced permeability faults**

K_{Faults} = K_{Facies} x 10000

Fluid is injected at fault roots

Same Injection rate = 800 m³/year, 10 ppm (160 kg H₂/year), starts at 1 Myr

REGIONAL HYDRODYNAMISM, WATER VELOCITY

NEW ENERGIES

Neutral faults

~1cm/yr

Water Darcy velocity (m/Myrs)

100 1000 1000 10000 10000 10000 10000

Transparent below 5mm/year

Regional hydrodynamism is **very**
 Sensitive to faults properties

Regional hydrodynamism is **very**
 sensitive to the hydr sensitive to the hydrothermal
influx, even if it is very small at 1^{rst} Water Darcy velocity (m/Myrs)

100 1000 10000 10000 100000 100+06

Transparent below 5mm/year

Regional hydrodynamism is **very

Sensitive to faults properties**

Regional hydrodynamism is **very**
 Sensitive to the hydrother glance

EAGE, June 2024

FREE-PHASE HYDROGEN SATURATION

- NEW ENERGIES

Cell vapor saturation

Cotto COM COM COM COM COM COM COM COM COM

Vapor accumulates below the cap

cock in the geologic time scale

Cenarios NEW ENERGIES

Cell vapor saturation

Denote the geologic time scale

Vapor accumulates below the cap

rock in the geologic time scale

Scenarios

High vapor saturations observed scenarios NEW ENERGIES

Cell vapor saturation

Dependence on the second of the cap

The prock in the geologic time scale

Scenarios

High vapor saturations observed

only at fault terminations in the

dynamic system Cell vapor saturation

0.06+00.0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.06-01

Vapor accumulates below the cap

rock in the geologic time scale

scenarios

High vapor saturations observed

only at fault termination Cell vapor saturation

Contribution of the second top the cap

Caption and the second top the cap

rock in the geologic time scale

scenarios

High vapor saturations observed

only at fault terminations in the

dynamic sys
-
- CORRECT ON THE MANUSE OF 1088 009 Vapor accumulates below the cap
rock in the geologic time scale
scenarios
High vapor saturations observed
only at fault terminations in the
dynamic system
Very different vapor-phase
hydrogen distributions in the 2
sys systems

FREE PHASE FLOW RATE

NEW ENERGIES

Neutral faults

Flux of H₂ vapor (g/m²/year)

neutral faults

-
- $\frac{1}{100}$ and $\frac{1}{50}$ and $\frac{1}{200}$ are $\frac{1}{200}$ an significant vapor-phase
hydrogen flux above Low values transparent

Diffuse and very low vapor flux with

neutral faults

No significant vapor flux in the

western reservoir inscenario #2

The dynamic scenario gives

significant **vapor-phase**
 hydrogen flux above
 400g/m2/year

MICROBIAL DEGRADATION

NEW ENERGIES

CONCLUSION

NEW ENERGIES

ONCLUSION
 H_2 migration is very different from HC migration

It is more difficult to have an intuition of the migration paths:
 \bullet Very sensitive to the water « plumbing system », especially fault flow properties

-
-
- **Internal of the migration**

It is more difficult to have an intuition of the migration paths:
 It is more difficult to have an intuition of the migration paths:
 It is more difficult to have an intuition of the migrati VERTON THE WATER SERVIET THE WATER SERVIET THE WATER WATERS AND THE WATER SERVIET THE WATER OF SURFERIES WERE SURFERIES WERE VERTIFIED THE WATER SURFERIES WATERS WATER SURFERIES MAY migrate over long distances by « dissolv May migration

May experience of the migration

May migration is very different from HC migration

May migrate over long distances by « dissolved flow »

May migrate over long distances by « dissolved flow »

Transition fr Transition is very different from HC migration

e difficult to have an intuition of the migration paths:

Very sensitive to the water « plumbing system », especially fault flow properties

May migrate over long distances b SION

ation is very different from HC migration

e difficult to have an intuition of the migration paths:

Very sensitive to the water « plumbing system », especially fault flow prop

May migrate over long distances by « d

Basin simulation is a tool which integrates all these parameters and physical processes
above the water α pumbing system α , especially fault flow properties
 All these parameters are parameters and physical proces **H₂** migration is very different from HC migration
It is more difficult to have an intuition of the migration paths:

• Very sensitive to the water « plumbing system », especially fault flow properties

• May migrate ov about H $_{\rm 2}$ sources, migration paths, H $_{\rm 2}$ accumulations and recharge rate

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

S @IFPENinnovation

