Molecular mechanisms of H₂ gas adsorption in clays in the context of geological nuclear waste disposal: Insights from classical atomistic simulations

Andrey G. Kalinichev, Sylvia M. Mutisya, Pinar Citli

Laboratoire SUBATECH (UMR 6457– Institut Mines-Télécom Atlantique, Nantes Université, CNRS/IN2P3), Nantes, France

Molecular-Scale Understanding of the Adsorption and Transport of Radionuclides in Cox Clay Formations

Primary objective:

improve molecular-scale understanding of the adsorption and transport properties of Callovo-Oxfordian clayey formations and cementitious materials in the context of radioactive waste disposal and storage

Gas Formation under Waste Storage Conditions

PhD thesis of Pinar CITLI (February 2024)

Computational Atomistic Modeling Tools

Molecular Dynamics (MD) - deterministic approach **Monte Carlo (MC)** - stochastic approach

In both approaches, MD or MC, the formalism of **statistical mechanics** is used to develop quantitative molecular-level understanding of the complex behavior of materials and their fluid interfaces:

- Structure and dynamics of aqueous and interfacial species
- Hydration, adsorption, complexation, diffusion, intercalation, H-bonding
- Atomistic mechanisms of ionic sorption and transport

 $t \sim 1-10 \text{ ns}$ $t \sim 10^{6}-10^{7} \text{ time steps}$ $n \sim 10^{6}-10^{7} \text{ config.}$ need significant computing power

 $N \sim 10^3 - 10^6$ atoms

Atomistic computer simulations are used nowadays as any other tool of materials research, on par with any other physical and chemical experimental methods (IR, Raman, NMR, Brillouin spectroscopies, X-ray and neutron diffraction, etc.)

Models of Interatomic Interactions

ClayFF

Cygan, Liang, Kalinichev, *J.Phys.Chem.B*, **108** 1255-1266 (2004) Cygan, Greathouse, Kalinichev, *J.Phys.Chem.C*, **125** 17573-17589 (2021)

Subatech

Nantes Université

GDR HydroGEMM4-6 novembre 2024, Paris5

SPC/E H₂O model

91, 6269-6271 (1987)

H_w (-0.8476 e)

Berendsen et al. J.Phys.Chem.,

GCMC simulations of H₂ Adsorption in Clay

PhD thesis of Pinar CITLI (February 2024)

- ✓ Grand Canonical Monte Carlo (GCMC) simulations of H_2/H_2O binary mixtures
- ✓ T = 298, 323 and 363 K ; P = up to 120 bar, 1000 bar and 10,000 bar

■ Nantes ■ Université

Smectite Clay Models

Dry, monolayer (1W), bilayer (2W) and trilayer (3W) hydrated interlayers of Na-, Ca- and Cs-montmorillonite (MMT)

$[M_{24}]$ (Si₂₄₈Al₈)(Al₁₁₂Mg₁₆)O₆₄₀(OH)₁₂₈.*n*H₂O

per each O₂₀(OH)₄ crystallographic for mono-, bi-, tri-layer hydrated MMT

H₂ Oversolubility in Clay Interlayers

Ubotech IMT Atlantique Bretagne-Pays de la Loire École Mines Télécom

Nantes Université

CNTS NUCLÉAIRE & PARTICULES

H₂ Oversolubility in Clay Interlayers

Citli, Kalinichev (2024) Grand Canonical Monte Carlo simulations of hydrogen adsorption in the interlayers of hydrated montmorillonite. *Applied Clay Science*, (in preparation).

Pressure Dependence of H₂ Adsorption on 2W-Na-MMT

École Mines-Télécom

ClayFF - Modeling of Clay Nanoparticle Edges

Pouvreau, Greathouse, Cygan, Kalinichev (2017) *J.Phys.Chem.C*, **121**, 14757-71 Pouvreau, Greathouse, Cygan, Kalinichev (2019) *J.Phys.Chem.C*, **123**, 11628–38 Cygan, Greathouse, Kalinichev (2021) *J.Phys.Chem.C*, **125** 17573-17589

■ Nantes ■ Université

Montmorillonite Clay Nanoparticle Edge Surfaces

Ngouana-Wakou et al. (2024) J.Phys.Chem.C, (in preparation)

H₂ Gas Adsoption on Different Clay Surfaces

Mutisya, Kalinichev (2024) J. Phys. Chem. C, in preparation

IN Nantes ✔ Université

H₂ Gas Adsoption on Different Clay Surfaces

Constant Chemical Potential MD Simulations

Perego, Salvalaglio, Parrinello (2015) *J. Chem. Phys.*, **142**, 144113 Ozcan, Perego, Salvalaglio, Parrinello, Yazaydin (2017) *Chemical Science*, **8**, 3858-3865

IN Nantes ✓ Université

H₂ Solubility in Salt Solutions

Mutisya, Kalinichev (2024) J. Phys. Chem. C, in preparation

IN Nantes ✔ Université

H₂ Solubility in Clay Interlayers vs Solution Concentration

Region	Pure H ₂ O	3 M CsCl
Interlayer	2.39 ± 0.387	3.014 ± 0.8
Bulk	1.25 ± 0.133	0.812 ± 0.16
Over-solubility factor	2.03	3.71

- H₂ solubility in the bulk region is consistent with those obtained in bulk simulations
- However, H₂ shows a much higher solubility within the clay interlayers, consistent with other studies
- Presence of Cs⁺ in clay nearly doubles the oversolubility factor of H₂ in the interlayers compared to the pure water system

Conclusions

- ✓ H₂ gas adsorption increases with, increasing P, decreasing T, increasing interlayer pore size / clay hydration level
- H₂ solubility in clay interlayers is up to 8 times higher than in the bulk
- In monolayer hydrated clays Ca-MMT accepts larger amounts of H₂
- In bilayer hydrated clays there is no significant effect of the interlayer cation type
- \checkmark No H₂ saturation is observed in clay interlayers up to 1000 bar
- ✓ Under the anticipated *P*-*T* range of the deep geological nuclear waste repository, the saturation of H_2 is not achievable
- Presence of Cs⁺ in the waste enhances H₂ gas adsorption within the clay interlayers, potentially further mitigating the risk of over-pressurization in the repository

Nantes
Université

18

Acknowledgments

R.T.Cygan, J.-J.Liang, J.A.Greathouse – Sandia National Labs, USA *B.Grambow, A.Abdelouas* – Subatech, Nantes *A.O.Yazaydin* – University College London, UK *L.Truche* – ISTerre, Université Grenoble Alpes

Financial and Computational Support:

Grand Equipment National de Calcul Intensif (GENCI) Très Grand Centre de Calcul du CEA (TGCC)

IMT Atlantique - Industrial Chair "Storage and Disposal of Radioactive Waste"

■ Nantes ■ Université

