The association of natural hydrogen and nitrogen : the ammonium clue ?

Insights from geochemical modeling

<u>Nicolas Jacquemet¹</u> & Alain Prinzhofer²

¹ Independent geochemical and reactive transport modeler ² Scientific director of GEO4U

Colloque annuel du GdR HydroGEMM / édition 2024 / IPGP & IFPEN

Motivation of the study

Seepage of H2... and N2

- Hydrogen systems of the Oman and New Caledonian ophiolite and of the Brazil's Sao Francisco Basin :
 - Seep of H2 associated with N2 at the central part of the hydrogen systems
 - Seep of (almost) pure N2 at the periphery of the hydrogen systems

Ammonium (NH4+) as the source of N2 ?

- NH4+ (ammonium)-bearing natural minerals are reported in the literature
- NH3 (ammonia; the conjugate base of NH4+) is known to decompose into N2 and H2 with temperature :

2 NH3 = N2 + 3 H2

- In the lower crust, at temperature around 250 °C, an isotopic study of Bebout et al. (1992) demonstrated that nitrogen generation was linked to ammonium reactivity
- → Does NH4+ could be the source/precursor of the emitted N2 in the hydrogen systems ?

Geochemical models set-up

Initial chemical systems = 'simple' model systems

(A) Redox-unbuffered systems

- Water + FeCl2 $Fe^{2+} + H^+ = Fe^{3+} + 0.5 H_2$
- Water + NH4Cl
- Water + NH4Cl + FeCl2
- FeCl2 and NH4Cl salts provide ferrous iron
 & ammonium to the water
- Plus one volume of 1 L possibly hosting a multicomponent gas phase

Initial chemical systems = 'simple' model systems

(B) Redox-buffered systems

- Water + Magnetite-Hematite ('Control' system)
- Water + Fayalite-Magnetite-Quartz ('Control' system)
- Water + Magnetite-Hematite + NH4Cl
- Water + Fayalite-Magnetite-Quartz + NH4Cl
- The FMQ & MH mineral assemblages set the oxygen fugacity within the systems ; and provide ferrous & ferric iron sources & sinks
- FMQ: highly reducing conditions; MH: lower;
- Plus one volume of 1 L possibly hosting a multicomponent gas phase

Initial chemical systems = 'simple' model systems

- (B) Redox-buffered systems (water-mineral systems)
 - Water + Fayalite-Magnetite-Quartz + NH4Cl

- Done with the version 3 of the PHREEQC software with the BRGM's Thermoddem database
- Within the 25-300 °C temperature range (Earth surface to ~10 km depth (normal geothermal gradient))
- Considered aqueous, mineral and gaseous species :
 - H2O-CI-Fe(+III)-Fe(+III)-N(-III)-N(0)-N(+III)-N(+V)-Si
 - Fayalite (Fe2SiO4)
 - Magnetite (Fe3O4)
 - alpha-Quartz (SiO2)
 - Hematite (Fe2O3)
 - H2(g), H2O(g), HCl(g), N2(g), NH3(g), O2(g)

- Based on Law of Mass Action (LMA) resolution
- The K's of formation-dissolution reactions are calculated as function of temperature

$$\log K_{T} = A_{1} + A_{2}T + \frac{A_{3}}{T} + A_{4}\log T + \frac{A_{5}}{T^{2}} + A_{6}T^{2}$$

• The pressure conditions of the calculations are (='convention') :

– 25-100 °C : 1 bar

- 100-300 °C : Saturation vapor pressure of water : 1 to 86 bar

- Aqueous solution activity model :
 - B-dot for the charged species (ions)
 - 'Drummond' for dissolved gases (H2(aq), O2(aq), ...)
 - Other neutral species : activity of 1
 - H2O(I) (solvent) with a specific equation
- PVTx & gas species activity (fugacity) of the multicomponent gas mixture : Peng-Robinson Equation of State (PR EoS)
 - Inputs : critical temperature & pressure & acentric factors (from phreeqc.dat, NIST and Thermosolver database)
 - 'hard-coded' kij's

$$\log \gamma_i = -\frac{A \, z_i^2 \sqrt{I}}{1 + a_i^0 B \sqrt{I}} + \dot{BI}$$

$$\log \gamma_{i(aq)} = -\left(C + FT + \frac{G}{T}\right)I + (E + HT)\left(\frac{I}{I+1}\right)$$

$$a_{H_2O} = 1 - 0.017 \sum_{i}^{N_{aq}} \frac{n_i}{W_{aq}}$$

Results

• Redox-<u>un</u>buffered systems

0.100 0.008 0.099 0.006 N(-III)_Water+NH4Cl V(-III) (moles) N(-III)_Water+NH4Cl+FeCl2 H₂, N₂ (moles) 0.098 H2_Water+NH4Cl 0.004 H2_Water+NH4Cl+FeCl2 0.097 N2_Water+NH4Cl N2_Water+NH4Cl+FeCl2 0.002 0.096 0.095 0.000 Ē 125 175 25 75 225 275 T (°C)

Water + NH4Cl

 $NH_4^+ = 1.5 H_2 + 0.5 N_2 + H^+$

• Redox-<u>bu</u>ffered systems

H2_{TOT} & N2_{TOT} (Gas & Water)

- Redox-<u>bu</u>ffered systems
 - <u>Hydrogen generation</u>
 - Water + Magnetite-Hematite + NH4Cl

 Fe_3O_4 (magnetite) + 0.5 H₂O = 1.5 Fe₂O₃ (hematite) + 0.5 H₂

• Water + Fayalite-Magnetite-Quartz + NH4Cl

 $\begin{array}{l} 1.5 \ Fe_2 SiO_{4(s)} \ (fayalite) + H_2 O_{(l)} = Fe_3 O_{4(s)} \ (magnetite) \\ + SiO_{2(s)} \ (quartz) + 0.5 \ SiO_{2(aq)} \ (aqueous \ silica) + H_2 \end{array}$

$$Fe^{2+} + H^+ = Fe^{3+} + 0.5 H_2$$

- Redox-<u>bu</u>ffered systems
- <u>Nitrogen generation</u>
 - Water + Magnetite-Hematite + NH4Cl
 - Nitrogen generation occurs within 25-300°C

 $\begin{array}{l} 4 \ Fe_2O_3 \ (hematite) + NH_4{}^+ = 0.5 \ N_2 + 2.5 \ Fe_3O_4 \ (magnetite) \\ \\ + \ 0.5 \ Fe^{2+} + 2 \ H_2O \end{array}$

- Water + Fayalite-Magnetite-Quartz + NH4Cl
 - Nitrogen generation starts at 200 °C

 $2 \text{ NH}_4{}^+ + 3 \text{ Fe}_3 O_{4(s)} \text{ (magnetite)} + 4.5 \text{ SiO}_{2(s)} \text{ (quartz)}$

 $N_2 + 4 \ Fe_2 SiO_{4(s)} \ (fayalite) + 0.5 \ SiO_{2(aq)} \ (aqueous \ silica) + Fe^{2+} + 4 \ H_2O$

$$3 \ Fe^{3+} + NH_4{}^+ = 0.5 \ N_2 + 3 \ Fe^{2+} + 4 \ H^+$$

Typology of the produced gases

17

Implications for hydrogen systems comprehension

International Journal of Hydrogen Energy

Volume 50, Part B, 2 January 2024, Pages 161-174

Nicolas Jacquemet a 📯 🖾 , Alain Prinzhofer b

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.ijhydene.2023.07.265 ス

Get rights and content 🛪

Outlooks / improvements of the study

To compare with 'hydrothermal' lab experiments

- Ideally on the same 'simple' systems
- <u>Synthetic fluid inclusions in flexible gold cells experiments</u>

To compare with 'hydrothermal' lab experiments

• <u>Coupled Fused Silica Capillary Capsules (FSCCs) and Raman micro-</u> <u>spectroscopy experiments</u>

Jacquemet et al. (2016)

• NH4-bearing minerals dissolution

Holloway and Dahlgren (2002)

Mineral	Formula	Occurrences
Ammoniojarosite	(NH ₄)Fe ³⁺ (SO ₄) ₂ (OH) ₆	ore deposits: WY & UT, USA; hydrothermal: The Geysers, CA
Boussingaultite	(NH ₄) ₂ Mg(SO ₄) ₂ ·6H ₂ O	hydrothermal: The Geysers, CA
Lecontite	(NH4,K)Na(SO4)·2H2O	evaporite, Pakistan
Letovicite	$(NH_4)_3H(SO_4)_2$	hydrothermal: The Geysers, CA, USA; Campi Flegrei, Italy
Mascagnite	$(NH_4)_2SO_4$	hydrothermal: The Geysers, CA, USA
Sal-ammoniac	(NH ₄)Cl	hydrothermal: Etna and Vesuvius, Italy
Tschermigite	$(NH_4)Al(SO_4)_2 \cdot 12H_2O$	hydrothermal: The Geysers, CA. USA; Campi Flegrei, Italy; Taupo, New Zealand
Mundrabillaite	(NH ₄) ₂ Ca(HPO ₄) ₂ ·H ₂ O	cave deposit: Australia
Ammonian fluorapophyllite Ammonioleucite	(NH ₄ ,K)Ca ₄ Si ₈ O ₂₀ (F,OH)·8H ₂ O (NH ₄)AlSi ₂ O ₆	hydrothermal: Calvinia, South Africa and Guanajuato, Mexico metamorphosed volcanic rock: Japan; hydrothermal: The Gevsers, CA
Buddingtonite	NH ₄ AlSi ₃ O ₈	hydrothermal: Sulphur Bank Mine, CA; Cedar Mt, NV, USA; Japan; Phosphoria Fm.: ID, USA; oil shale: Australia
Tobelite	$(NH_4,K)Al_2(Si_3Al)O_{10}(OH)_2$	hydrothermally altered clay: Japan; UT, USA; oil shale: North Sea

K+/NH4+ exchange on clay minerals' surface → cation
 exchange

Appelo and Postma

To investigate T and P conditions beyond 300 °C and 86 bar

• <u>Pressure</u> :

PHREEQC is 'designed' to explore 'high' pressures

Figure 5. The solubility of gypsum and anhydrite as a function of temperature at 1, 500, and 1,000 bars. Data points from Blount and Dickson (1973); lines calculated by PHREEQC.

To investigate T and P conditions beyond 300 °C and 86 bar

• <u>Temperature</u> :

- PHREEQC calculations above 300 °C
 - B-dot model : extrapolation of the A(T), B(T) and Bdot(T) parameters to T > 300 °C BUT below the critical T of water (374 °C) ?
- Use of other softwares :
 - SupPHREEQC

$$\log \gamma_i = -\frac{A z_i^2 \sqrt{I}}{1 + a_i^0 B \sqrt{I}} + \dot{BI}$$

 HCh (Shvarov, 2008) (Gibbs Energy Minimization, not Law of Mass Action)

To consider the kinetics of redox and mineral reactions

• Mineral reactions = mineral dissolution-precipitation reactions

• Redox reactions kinetics : catalysts, ... ?

A page of advertising

- Collaboration with labs (master and PhD students supervision, ...)
- Execution of R&D modeling studies (mainly) with PHREEQC
 - OD geochemical models
 - Reactive Transport (RT) models
- PHREEQC training courses :

```
!!! Next PHREEQC course training !!!
11, 12 and 13 February 2025
In-person ; in (the beautiful town of) Paris
https://geochemical-consulting.com/phreeqc-training-courses
```

Thanks for your attention !

Appendices

Redox-unbuffered systems

Water + FeCl2

Water + NH4Cl +/- FeCl2

$$Fe^{2+} + H^+ = Fe^{3+} + 0.5 H_2$$

 $NH_4^+ = 1.5 H_2 + 0.5 N_2 + H^+$

Redox-buffered systems

Chemical reactions

+ Aqueous solution

Conclusion

- Gas-water-mineral equilibrium calculations up to 300°C were executed with PHREEQC on initial model systems including ammonium (NH4+)
- → To see if this ion could be a 'precursor' in the generation of hydrogen and/or nitrogen seeping out of hydrogen systems
- The below reactions involving NH4+ were evidenced
- Under highly reduced redox conditions (FMQ fO2 buffering) the produced gas is mainly hydrogen ; while under lower reduced redox conditions (MH fO2 buffering), the produced gas is mainly nitrogen
- Implications for hydrogen systems comprehension are addressed

$$NH_4^+ = 1.5 H_2 + 0.5 N_2 + H^+$$

3 Fe³⁺ + NH₄⁺ = 0.5 N₂ + 3 Fe²⁺ + 4 H⁺