







### Hydrogen at the Heart of Energy Transition: Prospects and Challenges

Mickaele Le Ravalec

**GDR HydroGEMM – 4 November 2024** 





- What role for  $H_2$  in the energy transition?
- How to produce  $H_2$ ?
- For what uses?
- How much does it cost?
- What about the environmental impact?
- Conclusion



#### **OVERVIEW**

#### • What role for $H_2$ in the energy transition?

- How to produce  $H_2$ ?
- For what uses?
- How much does it cost?
- What about the environmental impact?
- Conclusion



### **EVOLUTION OF GREENHOUSE GAS (GHG) EMISSIONS**

60 Business as usual 50 2015 NDCs Current NDCs 40 **PARIS 2015** 30 Global greenhouse gas emissions by sector 20 2.0°C 10 1.8°C 1.5°C 0 2010 2020 2040 2000 2030 2050

Global GHG emissions (Gt CO<sub>2</sub>e/year)





Right before COP28 (2023): UN Environment Program → global warming of 2.9°C in 2100 Right before COP29 (2024): UN Environment Program → global warming of 3.1°C in 2100

We need **to step up action** and set more ambitious targets



#### WHAT ROLE FOR H<sub>2</sub>?

# Figure 2.5 CO<sub>2</sub> emissions reductions by mitigation measure in the NZE Scenario, 2022-2050



ZUID IFFFF



#### WORLDWIDE INTEREST IN LOW-CARBON H<sub>2</sub>

- 83 countries with national H<sub>2</sub> strategies to address climate issues + 30 countries developing strategic planning documents
  - Major players: European Union, United States, Australia, Japan, South Korea, China
- Within these strategies,
  - Low-carbon H<sub>2</sub> is intended to replace conventional fossil-based H<sub>2</sub> for traditional uses (production of steel, ammonia and methanol, oil refining)
  - Low-carbon H<sub>2</sub> is also planned for new uses.



Argus Consulting (2024)

#### Two types of players :

- Importing countries with important H<sub>2</sub> needs
- **Exporting countries with lots of renewable and/or gas resources**





#### • What role for $H_2$ in the energy transition?

#### • How to produce $H_2$ ?

- For what uses?
- How much does it cost?
- What about the environmental impact?
- Conclusion



#### THE COLORS OF HYDROGEN

| • H <sub>2</sub> extra<br>gasifica                      | /Black<br>acted from coal using<br>ation                                               | Gray<br>• H <sub>2</sub> extracted f<br>using steam-r<br>reforming                      | rom natural gas<br>nethane                         | Blue<br>Brown/Blac<br>CO <sub>2</sub> capture<br>stored or re                                | ck/Gray H <sub>2</sub> with<br>ed, and either<br>epurposed |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| • H <sub>2</sub> prod<br>splittin<br>(produc<br>instead | bise<br>duced by thermal<br>g of methane<br>ced solid carbon<br>I of CO <sub>2</sub> ) | Green<br>• H <sub>2</sub> produced H<br>of water, with<br>from renewak<br>wind or solar | by electrolysis<br>electricity<br>ble sources like | <ul> <li>Pink</li> <li>H<sub>2</sub> produced by electrolysis using nuclear power</li> </ul> |                                                            |  |
| :hod,                                                   | Yellow<br>● H <sub>2</sub> produced<br>electrolysis v<br>from various                  | from<br>with electricity<br>sources (fossil,                                            | White<br>• H <sub>2</sub> occuring in<br>form      | n its natural                                                                                |                                                            |  |

renewable, nuclear)

#### Color indicates production method,

not carbon content

#### 8 © 2016 IFPEN

#### **iP**Energies nouvelles

### SOME OF THE MOST COMMON ANTHROPIC PRODUCTION METHODS



#### **STEAM-METHANE REFORMING**

### CH<sub>4</sub>+H<sub>2</sub>O=CO+3H<sub>2</sub> $CH_4$ Vapeur Т CO<sub>2</sub> CO+H<sub>2</sub>O=CO<sub>2</sub>+H<sub>2</sub>

 $\approx 10 \text{ kg CO}_2 \text{e} / \text{kg H}_2 \text{ produced}$ (55 % for the process / 45 % for energy)







Gray H<sub>2</sub>

 $CH_{4}$ 

#### **STEAM-METHANE REFORMING + CCUS**

 $CO_2$ 

CO



**CCUS:** Carbon Capture, Utilization and Storage CO<sub>2</sub> captured for the process or both the process and energy

- Location of the demonstration pilot for the DMX<sup>™</sup> process, which aims to capture the CO<sub>2</sub> in the gases emitted during steel production at the ArceloMittal
- DMX<sup>™</sup> process developed by IFPEN

DMX Demonstration Dunkirk



Blue H<sub>2</sub>



### ELECTROLYSIS OF WATER



Water H<sub>2</sub>O

- For H<sub>2</sub> to be green, electricity must be generated from renewable sources
- To produce 1 Mt H<sub>2</sub>
  - 55 TWh

© 2016 | FPEN

- 9 Mt of desalinated water (10-13 due to losses) or 20-30 Mt of sea water
- Energy content of 1 Mt  $H_2$ : 33 TWh  $\rightarrow$  60 % efficiency
- Electrolyzers
  - Alkaline: mature, cheapest technology, V1 not suitable for intermittent energy
  - PEM: more recent technology, more expensive (requires rare metals), can handle intermittent loads
  - SOEC: at demonstration level, even more expensive but more efficient, not suited for intermittent loads
  - AEM: most recent technology, the best of alkaline and PEM

#### **PYROGASIFICATION OF BIOMASS**



- For  $H_2$  to be green, biomass  $\leftarrow$  wastes
- 30 t of biomass  $\rightarrow \approx 1$  t of H<sub>2</sub> + 5,5 t of biochar
- Biochar: used to amend soils, acts as a stable carbon sink

(Derbilova et al., 2024)

Green H2

#### WHAT ABOUT NATURAL H<sub>2</sub>?





#### AN EXPLOITATION IN ITS INFANCY

Known natural hydrogen deposits and fairy circles. Fairy circles can be found all over the world.

White H<sub>2</sub>

 Diverse diameters, locations, and densities



# NATURAL H<sub>2</sub>: SOME IFPEN WORKS (IN A VERY FEW WORDS)





Réaction mise en évidence par étude expérimentale





Geymond et al. (2023)





H<sub>2</sub> storage in salt caverns and aquifers, microbial interactions, modeling Compatibility with materials (steels, polymers)



• What role for  $H_2$  in the energy transition?

• How to produce  $H_2$ ?

• For what uses?

• How much does it cost?

• What about the environmental impact?

Conclusion



#### FEEDSTOCK AND ENERGY CARRIER



### H2 NEEDED TO MEET CARBON NEUTRAL OBJECTIVES



- Industry is expected to be the main driver of lowcarbon H<sub>2</sub> demand until 2030
- Transportation could then take over, reaching the same level as industry
- But there are major uncertainties, mainly concerning transportation

#### carbon H<sub>2</sub>



### H<sub>2</sub> FOR TRANSPORTATION: SOME IFPEN WORKS (IN A VERY FEW WORDS)



#### ANNUAL FUEL DEMAND IN FRANCE IN 2050

#### ReFuelEU Aviation: European regulation requiring the use of lowcarbon fuel in the aviation sector

|                                                                            | 2025 | 2030                                               | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------------------------------------------|------|----------------------------------------------------|------|------|------|------|
| Taux d'incorporation<br>de SAF <sup>7</sup> (e-kérosène<br>et biokérosène) | 2 %  | 6 %                                                | 20 % | 34 % | 42 % | 70 % |
| Part minimale de e-<br>carburants<br>(e-kérosène<br>uniquement)            | -    | 1,2 %<br>(sur 2030-2031)<br>2 %<br>(sur 2032-2034) | 5 %  | 10 % | 15 % | 35 % |

 FuelEU Maritime: European regulation setting GHG emission reduction targets for the maritime sector

|                                                            | 2025  | 2030  | 2035     | 2040   | 2045   | 2050   |
|------------------------------------------------------------|-------|-------|----------|--------|--------|--------|
| Cible de réduction<br>de l'intensité GES<br>des carburants | - 2 % | - 6 % | - 14,5 % | - 31 % | - 62 % | - 80 % |







• What role for  $H_2$  in the energy transition?

• How to produce  $H_2$ ?

• For what uses?

• How much does it cost?

• What about the environmental impact?

Conclusion



### HOW MUCH TO PRODUCE 1 kg OF H<sub>2</sub>?



#### Levelized costs for 2021, 2022 and estimated costs for 2030 in the NZE scenario

- The cheapest one
  - Today: gray H<sub>2</sub>
  - In 2030: blue H<sub>2</sub> becomes cost-competitive

Stripped zone: impact of  $CO_2$  price (15 to 140 \$/t)

22 | © 2016 IFPEN

- IEA. CC BY 4.0.
- The cheapest low-carbon H<sub>2</sub> in 2030 according to IEA projections
  - Solar green H<sub>2</sub>: min is 1,7 \$/kg H<sub>2</sub>
  - Wind  $H_2$ : min is 2 \$/kg  $H_2$
  - Nuclear H<sub>2</sub>: min is 2,8 \$/kg H<sub>2</sub>



#### **COSTS FOR TRANSPORTATION**



FIGURE 6.7. Transport cost by pathway as a function of distance for a fixed project size of 1.5 MtH<sub>2</sub>/yr in 2050

For short distances: pipelines are more attractive than ships, with costs < USD 1/kg H<sub>2</sub>

**For larger distances**: ammonia is the most attractive carrier for shipping H2.



Note: Optimistic scenario for costs.

23 | © 2016 IFPEN

#### GERMANY EXAMPLE: PRODUCTION AND TRANSPORTATION



Source: BloombergNEF. Note: Assumes 2,000km pipeline transport form Valencia, Spain to Duisburg, Germany using a repurposed 48-inch pipeline operated between 80-60bar. Compressor stations every 500km along the pipeline. Local distribution distance is 50km using a repurposed 8-inch pipe operated at 7-3bar. Hydrogen is produced using western alkaline electrolyzers in both countries. Electricity from tracking solar PV is used in Spain, onshore wind in Germany.

#### **Green H<sub>2</sub> imported by pipeline from Spain to Germany**

H<sub>2</sub> imported from Spain would be cost-competitive in other European coutries (e.g., Germany).



# Import of H<sub>2</sub> in the form of ammonia

Imported derivative products would be less costly when there is no reconversion stage.

Source: BloombergNEF. Note: Assumes ship transport to Germany over 20,000km from Australia, 6,500km from Canada, 12,000km from UAE and 18,000km from



• The number of FID projects has doubled

Expected production in 2030 (based on FID projects): 3.4 Mt/y = 1.9 Mt/y + 1.5 Mt/y Electrolysis
Blue H<sub>2</sub>

Many projects were delayed or even suspensed due to unclear demand signals, funding barriers, delays in rolling out incentives, regulatory uncertainties, licencing and permitting issues and operation challenges.

● China

Accounts for 40% of growth, has 60% of the world's electrolyzer production capacity.
 Lower production costs





• What role for  $H_2$  in the energy transition?

• How to produce  $H_2$ ?

• For what uses?

• How much does it cost?

• What about the environmental impact?

Conclusion



# LIFE CYCLE ANALYSES - CO<sub>2</sub> EMISSION INTENSITY FOR DIFFERENT PRODUCTION METHODS



# LIFE CYCLE ANALYSES - $CO_2$ EMISSION INTENSITY FOR DIFFERENT PRODUCTION METHODS

• Natural H<sub>2</sub> is associated to other gas, with varying concentrations • CO<sub>2</sub> emission intensity depends on the concentration of these gases Mali : 97,4 % H<sub>2</sub>, 1,2 % N<sub>2</sub> Bougou 1 🔎  $H_2$ Oman Philippines :  $60 \% H_2$ , 1 % N<sub>2</sub>, 39 % CH<sub>4</sub> Philippines Kansas 00000 Turquie : 10 % H<sub>2</sub>, 2 % 7 N<sub>2</sub>, 88 % CH<sub>4</sub> **New Caledonia** Turkey /D 90 100 100 20 70 CH₄  $N_2$ 





#### CONCLUSION

More and varied uses → very high demand projections
 Green H<sub>2</sub> / Blue H<sub>2</sub> for transitional low-carbon H<sub>2</sub>?
 Importing / exporting countries → new geopolitical challenges?
 Exports in what forms?

| H <sub>2</sub> | Decreases<br>GHG emission<br>intensity | Low cost | Low electricity requirements | Maturity |
|----------------|----------------------------------------|----------|------------------------------|----------|
| Blue           | +                                      | ++       | ++                           | +++      |
| Green          | +++                                    | -        |                              | ++       |
| White          | ++?                                    | ++       | ++                           | -        |

Natural  $H_2$  = possible game changer



Innover les énergies

Retrouvez-nous sur : www.ifpenergiesnouvelles.fr @IFPENinnovation

